Skip to main content
  • UN ESCAP - Home
  •  
  • UN ESCAP - Home
  •  
  • UN ESCAP - Decade of Action
  •  
  • RISK AND RESILIENCE PORTAL
    An Initiative of the Asia-Pacific Disaster Resilience Network
  • Log in
  • Home
  • Risk & Resilience Analytics expand_more
  • Country Tools & Applications expand_more
  • Regional cooperation expand_more
  • E-learning & Knowledge expand_more
Home

expand_more Risk & Resilience Analytics

    expand_more Hazard Hotspots

      Climate-related and biological multi-hazard Drought Flood Heatwave Cyclone Earthquake and Tsunami

    expand_more Economic Impact

      Regional Economic Impact East and North-East Asia North and Central Asia Pacific South-East Asia South and South-West Asia Pacific Small Island Developing States

    expand_more Adaptation costs and priorities

      Regional Overview East and North-East Asia North and Central Asia Pacific South-East Asia South and South-West Asia Pacific Small Island Developing States

expand_more Country Tools & Applications

    expand_more Country profiles

      Afghanistan American Samoa Armenia Australia Azerbaijan Bangladesh Bhutan Brunei Darussalam Cambodia China Cook Islands D.P.R. Korea Fiji French Polynesia Georgia Guam India Indonesia Iran (Islamic Republic. of) Japan Kazakhstan Kiribati Kyrgyzstan Lao P.D.R. Malaysia Maldives Marshall Islands Micronesia (F.S) Mongolia Myanmar Nauru Nepal New Caledonia New Zealand Niue Northern Mariana Islands Pakistan Palau Papua New Guinea Philippines Republic of Korea Russian Federation Samoa Singapore Solomon Islands Sri Lanka Tajikistan Thailand Timor-Leste Tonga Türkiye Turkmenistan Tuvalu Uzbekistan Vanuatu Viet Nam
    Decision support systems Data explorer SDG action tracker for disaster and climate resilience

expand_more Regional cooperation

    The Aral Sea catastrophe - Storyboard

expand_more E-learning & Knowledge

    expand_more E-learning tools

      IBF Course DiDRR Part 1 : Basic DiDRR Part 2 : Advanced
    Knowledge products

Breadcrumb

  1. Home
  2. Knowledge Products
  3. Protecting The Most Vulnerable Amidst COVID-19 and Cyclone Amphan
Shutterstock / Richard Whitcombea
Protecting the most vulnerable amidst COVID-19 and Cyclone Amphan
Category
Awareness Building

Last week saw a ‘crisis on top of a crisis’ in South Asia – the unprecedented impacts of the COVID-19 pandemic in the region was followed by the most powerful cyclone to strike India and Bangladesh for 20 years. Cyclone Amphan claimed over 100 lives and destroyed the homes and livelihoods of thousands of families already struggling to cope with the COVID-19 crisis. The Asia-Pacific Disaster Report 2019 identifies these coastal regions of South Asia as a multi-hazard risk hotspot where poverty, inequalities and environmental degradation converge with disaster risks. Within the hotspot, risks to lives and livelihoods are now further compounded by the fast spreading COVID-19. Nevertheless, the preparedness and response to Cyclone Amphan have revealed three key enablers that protect the most vulnerable people when hazards intersect with COVID-19:

1. Effective early warning systems must address risk scenarios and potential impacts.

In the past, similar tropical cyclones caused many thousands of deaths. The deadliest tropical cyclone on record, the Great Bhola Cyclone in November 1970, killed between 300,000 to 500,000 people in modern-day Bangladesh and resulted in the 1972 establishment of an inter-governmental platform to institutionalize the regional cooperation mechanism, the WMO/ESCAP Panel on Tropical Cyclones. The platform is supported by the WMO Regional Specialized Meteorological Centre (RSMC) in New Delhi and maintains a network between the cyclone early warning systems in South and South West Asia. Further, substantial advances in cyclone early warning systems in recent years have enabled both India and Bangladesh to pursue successful zero-casualty policies.

As it progressed through the Bay of Bengal, Amphan intensified rapidly on 17 May to become a “Super Cyclonic Storm” of category 5. However, it weakened ahead of landfall to category 3 on 20 May. The RSMC captured the dynamics of rapid intensification of Amphan and accurately predicted its track and landfall with sustained wind speed and torrential rainfall, between Digha (West Bengal) and Hatiya Islands (Bangladesh). The Indian Meteorological Department warned that a storm surge of up to 4-5 meters above astronomical tide would impact the inundated low-lying areas of West Bengal. The Bangladesh Meteorological Department for the first time introduced regular storm surge forecasts. An accurate early warning coupled with appreciable lead time, dynamic risk scenarios of the rapidly intensifying cyclone, and impact forecasts, all guided the response and evacuation processes.

2. Evacuation measures must be risk-informed.

As Amphan arrived, India and Bangladesh were both struggling with rising COVID-19 infections. India had already surpassed 100,000 infections. Lockdowns and travel restrictions complicated the response and evacuation process. Furthermore, the cyclone struck densely populated low-lying coastal areas of Odisha, West Bengal and adjoining Bangladesh, where cyclone shelters, community buildings and schools typically used as the evacuation centres had been converted into quarantine facilities. Many of these centres were also housing immigrant populations, who were undergoing mandatory quarantine processes after arriving from different cities and states during the lockdown periods. The challenge was to protect the vulnerable people within emergency shelters, from Cyclone Amphan as well as COVID-19.

The substantial lead-time of the early warning combined with the impact-based forecasts of the cyclone, allowed the authorities of India and Bangladesh to repurpose the shelters to address diverse community risk profiles. A composite risk matrix approach that included the impact parameters of Amphan as well as those of COVID-19 helped design a complex system of evacuation shelters for 3 million people, informed by specific vulnerabilities. Where the risk of COVID-19 transmission was high, shelters were kept only half full in order to facilitate social distancing, whilst shelters in areas with highest exposure to the cyclone operated at full capacity. Ultimately, the impact-based, risk-informed early warning systems guided the complex response including a large-scale evacuation which saved lives.

3. Amphan demonstrates that nature-based solutions offer buffers against cyclones.

ESCAP’s analytical report ‘Ocean accounting for disaster resilience’ reviews various case studies and highlights how natural coastal ecosystems act as a buffer against cyclones, by reducing wind speeds and storm surges and therefore protecting communities from the worst impacts. This was demonstrated during Cyclone Amphan, as the Sundarbans, the world’s largest mangrove forest on a vast delta, weakened the cyclone ahead of its landfall from a super cyclone to a very severe cyclonic storm. As a result, the wind speeds, storm surges and flooding to coastal areas of West Bengal in India and Bangladesh were reduced. The importance of nature-based solutions for protecting the most exposed communities from hazards was clearly evident.

ESCAP’s Asia-Pacific Disaster Resilience Network – a network of networks that also includes the WMO/ESCAP Panel on Tropical Cyclone, is configured across the multi-hazard risk hotspots. Building on regional co-operation framework, it is an effort to promote impact-based, risk-informed early warning systems that address cascading disasters.

URL : Click to visit the source
Please switch to Chrome or MS Edge to improve your experience.
UNESCAP Logo
© United Nations ESCAP

Additional Links

  • UN Website
  • UN Website locator
  • Privacy Notice
  • Terms of Use
  • Fraud Alert

Get social with us

Newsletter

Subscribe to our monthly email newsletter.